Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Hered ; 115(3): 253-261, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38373252

ABSTRACT

The lower Rio Grande and Pecos River of the southwest United States have been heavily modified by human activities, profoundly impacting the integrity of their aquatic wildlife. In this context, we focused our study on the population genomics of the Rio Grande Cooter (Pseudemys gorzugi), a freshwater turtle of increasing conservation concern, residing in these two rivers and their tributaries. The genetic data revealed two distinct populations: one in the Pecos and Black Rivers of New Mexico and another in the Rio Grande and Devils River of Texas, with admixed individuals identified at the confluence of the Rio Grande and Pecos River. In addition to having a smaller geographic range, we found lower observed heterozygosity, reduced nucleotide diversity, and a smaller effective population size (Ne) in New Mexico population. Our results depict a significant isolation-by-distance pattern across their distribution, with migration being notably infrequent at river confluences. These findings are pivotal for future conservation and restoration strategies, emphasizing the need to recognize the unique needs of each population.


Subject(s)
Genetic Variation , Genetics, Population , Rivers , Turtles , Animals , Turtles/genetics , Texas , New Mexico , Population Density , Conservation of Natural Resources
2.
Mol Psychiatry ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355786

ABSTRACT

Several lines of evidence point to a key role of the hippocampus in Autism Spectrum Disorders (ASD). Altered hippocampal volume and deficits in memory for person and emotion related stimuli have been reported, along with enhanced ability for declarative memories. Mouse models have demonstrated a critical role of the hippocampus in social memory dysfunction, associated with ASD, together with decreased synaptic plasticity. Chondroitin sulfate proteoglycans (CSPGs), a family of extracellular matrix molecules, represent a potential key link between neurodevelopment, synaptic plasticity, and immune system signaling. There is a lack of information regarding the molecular pathology of the hippocampus in ASD. We conducted RNAseq profiling on postmortem human brain samples containing the hippocampus from male children with ASD (n = 7) and normal male children (3-14 yrs old), (n = 6) from the NIH NeuroBioBank. Gene expression profiling analysis implicated molecular pathways involved in extracellular matrix organization, neurodevelopment, synaptic regulation, and immune system signaling. qRT-PCR and Western blotting were used to confirm several of the top markers identified. The CSPG protein BCAN was examined with multiplex immunofluorescence to analyze cell-type specific expression of BCAN and astrocyte morphology. We observed decreased expression of synaptic proteins PSD95 (p < 0.02) and SYN1 (p < 0.02), increased expression of the extracellular matrix (ECM) protease MMP9 (p < 0.03), and decreased expression of MEF2C (p < 0.03). We also observed increased BCAN expression with astrocytes in children with ASD, together with altered astrocyte morphology. Our results point to alterations in immune system signaling, glia cell differentiation, and synaptic signaling in the hippocampus of children with ASD, together with alterations in extracellular matrix molecules. Furthermore, our results demonstrate altered expression of genes implicated in genetic studies of ASD including SYN1 and MEF2C.

3.
Mol Biol Evol ; 40(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36656997

ABSTRACT

Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.


Subject(s)
Sirtuin 3 , Sirtuins , Animals , Sirtuins/genetics , Sirtuin 3/genetics , Evolution, Molecular , Vertebrates/genetics , Phylogeny , Mammals
4.
RNA ; 28(4): 609-621, 2022 04.
Article in English | MEDLINE | ID: mdl-35064043

ABSTRACT

Transposable elements (TEs) are genomic parasites that can propagate throughout host genomes. Mammalian genomes are typically dominated by LINE retrotransposons and their associated SINEs, and germline mobilization is a challenge to genome integrity. There are defenses against TE proliferation and the PIWI/piRNA defense is among the most well understood. However, the PIWI/piRNA system has been investigated largely in animals with actively mobilizing TEs and it is unclear how the PIWI/piRNA system functions in the absence of mobilizing TEs. The 13-lined ground squirrel provides the opportunity to examine PIWI/piRNA and TE dynamics within the context of minimal, and possibly nonexistent, TE accumulation. To do so, we compared the PIWI/piRNA dynamics in squirrels to observations from the rabbit and mouse. Despite a lack of young insertions in squirrels, TEs were still actively transcribed at higher levels compared to mouse and rabbit. All three Piwi genes were not expressed, prior to P8 in squirrel testis, and there was little TE expression change with the onset of Piwi expression. We also demonstrated there was not a major expression change in the young squirrel LINE families in the transition from juvenile to adult testis in contrast to young mouse and rabbit LINE families. These observations lead us to conclude that PIWI suppression, was weaker for squirrel LINEs and SINEs and did not strongly reduce their transcription. We speculate that, although the PIWI/piRNA system is adaptable to novel TE threats, transcripts from TEs that are no longer threatening receive less attention from PIWI proteins.


Subject(s)
DNA Transposable Elements , Rodentia , Animals , DNA Transposable Elements/genetics , Germ Cells/metabolism , Humans , Male , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rabbits , Rodentia/genetics , Rodentia/metabolism , Testis/metabolism
5.
Genome Biol Evol ; 13(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34480557

ABSTRACT

Globin-X (GbX) is an enigmatic member of the vertebrate globin gene family with a wide phyletic distribution that spans protostomes and deuterostomes. Unlike canonical globins such as hemoglobins and myoglobins, functional data suggest that GbX does not have a primary respiratory function. Instead, evidence suggests that the monomeric, membrane-bound GbX may play a role in cellular signaling or protection against the oxidation of membrane lipids. Recently released genomes from key vertebrates provide an excellent opportunity to address questions about the early stages of the evolution of GbX in vertebrates. We integrate bioinformatics, synteny, and phylogenetic analyses to characterize the diversity of GbX genes in nonteleost ray-finned fishes, resolve relationships between the GbX genes of cartilaginous fish and bony vertebrates, and demonstrate that the GbX genes of cyclostomes and gnathostomes derive from independent duplications. Our study highlights the role that whole-genome duplications (WGDs) have played in expanding the repertoire of genes in vertebrate genomes. Our results indicate that GbX paralogs have a remarkably high rate of retention following WGDs relative to other globin genes and provide an evolutionary framework for interpreting results of experiments that examine functional properties of GbX and patterns of tissue-specific expression. By identifying GbX paralogs that are products of different WGDs, our results can guide the design of experimental work to explore whether gene duplicates that originate via WGDs have evolved novel functional properties or expression profiles relative to singleton or tandemly duplicated copies of GbX.


Subject(s)
Evolution, Molecular , Gene Duplication , Animals , Hemoglobins/genetics , Phylogeny , Vertebrates/genetics
6.
Sci Rep ; 11(1): 12483, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127736

ABSTRACT

Golgi phosphoprotein 3 (GOLPH3) was the first reported oncoprotein of the Golgi apparatus. It was identified as an evolutionarily conserved protein upon its discovery about 20 years ago, but its function remains puzzling in normal and cancer cells. The GOLPH3 gene is part of a group of genes that also includes the GOLPH3L gene. Because cancer has deep roots in multicellular evolution, studying the evolution of the GOLPH3 gene family in non-model species represents an opportunity to identify new model systems that could help better understand the biology behind this group of genes. The main goal of this study is to explore the evolution of the GOLPH3 gene family in birds as a starting point to understand the evolutionary history of this oncoprotein. We identified a repertoire of three GOLPH3 genes in birds. We found duplicated copies of the GOLPH3 gene in all main groups of birds other than paleognaths, and a single copy of the GOLPH3L gene. We suggest there were at least three independent origins for GOLPH3 duplicates. Amino acid divergence estimates show that most of the variation is located in the N-terminal region of the protein. Our transcript abundance estimations show that one paralog is highly and ubiquitously expressed, and the others were variable. Our results are an example of the significance of understanding the evolution of the GOLPH3 gene family, especially for unraveling its structural and functional attributes.


Subject(s)
Birds/genetics , Evolution, Molecular , Golgi Apparatus/genetics , Membrane Proteins/genetics , Oncogene Proteins/genetics , Amino Acid Sequence/genetics , Animals , Carcinogenesis/genetics , Gene Duplication , Humans , Neoplasms/genetics , Phosphoproteins/genetics , Sequence Alignment
7.
Genome Biol Evol ; 12(8): 1419-1428, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32697843

ABSTRACT

The leaf-nosed bats (Phyllostomidae) are outliers among chiropterans with respect to the unusually high diversity of dietary strategies within the family. Salivary glands, owing to their functions and high ultrastructural variability among lineages, are proposed to have played an important role during the phyllostomid radiation. To identify genes underlying salivary gland functional diversification, we sequenced submandibular gland transcriptomes from phyllostomid species representative of divergent dietary strategies. From the assembled transcriptomes, we performed an array of selection tests and gene expression analyses to identify signatures of adaptation. Overall, we identified an enrichment of immunity-related gene ontology terms among 53 genes evolving under positive selection. Lineage-specific selection tests revealed several endomembrane system genes under selection in the vampire bat. Many genes that respond to insulin were under selection and differentially expressed genes pointed to modifications of amino acid synthesis pathways in plant-visitors. Results indicate salivary glands have diversified in various ways across a functional diverse clade of mammals in response to niche specializations.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Chiroptera/genetics , Selection, Genetic , Submandibular Gland/metabolism , Animals , Chiroptera/metabolism , Diet , Feeding Behavior , Transcriptome
8.
Anal Biochem ; 602: 113781, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32485163

ABSTRACT

MicroRNAs (miRNAs) are 18-24 nucleotide regulatory RNAs. They are involved in the regulation of genetic and biological pathways through post transcriptional gene silencing and/or translational repression. Data suggests a slow evolutionary rate for the saltwater crocodile (Crocodylus porosus) over the past several million years when compared to birds, the closest extant relatives of crocodilians. Understanding gene regulation in the saltwater crocodile in the context of relatively slow genomic change thus holds potential for the investigation of genomics, evolution, and adaptation. Utilizing eleven tissue types and sixteen small RNA libraries, we report 644 miRNAs in the saltwater crocodile with >78% of miRNAs being novel to crocodilians. We also identified potential targets for the miRNAs and analyzed the relationship of the miRNA repertoire to transposable elements (TEs). Results suggest an increased association of DNA transposons with miRNAs when compared to retrotransposons. This work reports the first comprehensive analysis of miRNAs in Crocodylus porosus and addresses the potential impacts of miRNAs in regulating the genome in the saltwater crocodile. In addition, the data suggests a supporting role of TEs as a source for miRNAs, adding to the increasing evidence that TEs play a significant role in the evolution of gene regulation.


Subject(s)
DNA Transposable Elements/genetics , MicroRNAs/genetics , Alligators and Crocodiles , Animals , Gene Library , Salinity
9.
Sci Rep ; 10(1): 8684, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457384

ABSTRACT

Essential for calcium homeostasis, TRPV5 and TRPV6 are calcium-selective channels belonging to the transient receptor potential (TRP) gene family. In this study, we investigated the evolutionary history of these channels to add an evolutionary context to the already available physiological information. Phylogenetic analyses revealed that paralogs found in mammals, sauropsids, amphibians, and chondrichthyes, are the product of independent duplication events in the ancestor of each group. Within amniotes, we identified a traceable signature of three amino acids located at the amino-terminal intracellular region. The signature correlates with both the duplication events and the phenotype of fast inactivation observed in mammalian TRPV6 channels. Electrophysiological recordings and mutagenesis revealed that the signature sequence modulates the phenotype of fast inactivation in all clades of vertebrates but reptiles. A transcriptome analysis showed a change in tissue expression from gills, in marine vertebrates, to kidneys in terrestrial vertebrates. Our results highlight a cytoplasmatic structural triad composed by the Helix-Loop-Helix domain, the S2-S3 linker, and the TRP domain helix that is important on modulating the activity of calcium-selective TRPV channels.


Subject(s)
Calcium/metabolism , Evolution, Molecular , TRPV Cation Channels/metabolism , Amino Acid Sequence , Amphibians/metabolism , Animals , Birds/metabolism , Gills/metabolism , HEK293 Cells , Helix-Loop-Helix Motifs , Humans , Kidney/metabolism , Mammals/metabolism , Mutagenesis, Site-Directed , Phylogeny , Sequence Alignment , TRPV Cation Channels/chemistry , TRPV Cation Channels/classification , TRPV Cation Channels/genetics
10.
Genome Biol Evol ; 10(8): 2110-2129, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30060036

ABSTRACT

Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes.


Subject(s)
Evolution, Molecular , Genome , Molecular Sequence Annotation , Predatory Behavior , Snakes/genetics , Adaptation, Physiological , Animals , Female , Photoreceptor Cells, Vertebrate , Receptors, Odorant/genetics , Reptiles/classification , Reptiles/genetics , Retinal Pigments/genetics , Selection, Genetic , Snakes/classification , Snakes/physiology , Venoms/genetics , Voltage-Gated Sodium Channels/genetics
11.
Nat Commun ; 9(1): 2774, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30018307

ABSTRACT

Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca. 25-73% of the genome) and composition of identifiable repeat elements. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific variation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny.


Subject(s)
Genetic Variation , Lizards/genetics , Microsatellite Repeats , Phylogeny , Snakes/genetics , Animals , Birds/classification , Birds/genetics , DNA Transposable Elements , Evolution, Molecular , Genome Size , Genomics , Lizards/classification , Mammals/classification , Mammals/genetics , Snakes/classification
12.
Chromosome Res ; 26(1-2): 25-43, 2018 03.
Article in English | MEDLINE | ID: mdl-29392473

ABSTRACT

Transposable elements (TEs) are genetic elements with the ability to mobilize and replicate themselves in a genome. Mammalian genomes are dominated by TEs, which can reach copy numbers in the hundreds of thousands. As a result, TEs have had significant impacts on mammalian evolution. Here we summarize the current understanding of TE content in mammal genomes and find that, with a few exceptions, most fall within a predictable range of observations. First, one third to one half of the genome is derived from TEs. Second, most mammalian genomes are dominated by LINE and SINE retrotransposons, more limited LTR retrotransposons, and minimal DNA transposon accumulation. Third, most mammal genome contains at least one family of actively accumulating retrotransposon. Finally, horizontal transfer of TEs among lineages is rare. TE exaptation events are being recognized with increasing frequency. Despite these beneficial aspects of TE content and activity, the majority of TE insertions are neutral or deleterious. To limit the deleterious effects of TE proliferation, the genome has evolved several defense mechanisms that act at the epigenetic, transcriptional, and post-transcriptional levels. The interaction between TEs and these defense mechanisms has led to an evolutionary arms race where TEs are suppressed, evolve to escape suppression, then are suppressed again as the defense mechanisms undergo compensatory change. The result is complex and constantly evolving interactions between TEs and host genomes.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Genome/genetics , Mammals/genetics , Animals , Humans , Retroelements
13.
Genome Biol Evol ; 10(1): 344-358, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29340581

ABSTRACT

The genes that encode the α- and ß-chain subunits of vertebrate hemoglobin have served as a model system for elucidating general principles of gene family evolution, but little is known about patterns of evolution in amniotes other than mammals and birds. Here, we report a comparative genomic analysis of the α- and ß-globin gene clusters in sauropsids (archosaurs and nonavian reptiles). The objectives were to characterize changes in the size and membership composition of the α- and ß-globin gene families within and among the major sauropsid lineages, to reconstruct the evolutionary history of the sauropsid α- and ß-globin genes, to resolve orthologous relationships, and to reconstruct evolutionary changes in the developmental regulation of gene expression. Our comparisons revealed contrasting patterns of evolution in the unlinked α- and ß-globin gene clusters. In the α-globin gene cluster, which has remained in the ancestral chromosomal location, evolutionary changes in gene content are attributable to the differential retention of paralogous gene copies that were present in the common ancestor of tetrapods. In the ß-globin gene cluster, which was translocated to a new chromosomal location, evolutionary changes in gene content are attributable to differential gene gains (via lineage-specific duplication events) and gene losses (via lineage-specific deletions and inactivations). Consequently, all major groups of amniotes possess unique repertoires of embryonic and postnatally expressed ß-type globin genes that diversified independently in each lineage. These independently derived ß-type globins descend from a pair of tandemly linked paralogs in the most recent common ancestor of sauropsids.


Subject(s)
Evolution, Molecular , Multigene Family , Phylogeny , alpha-Globins/genetics , beta-Globins/genetics , Animals , Gene Duplication , Genome , Reptiles/genetics , Vertebrates/genetics
14.
Syst Biol ; 67(2): 236-249, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-28945862

ABSTRACT

The rapid diversification of Myotis bats into more than 100 species is one of the most extensive mammalian radiations available for study. Efforts to understand relationships within Myotis have primarily utilized mitochondrial markers and trees inferred from nuclear markers lacked resolution. Our current understanding of relationships within Myotis is therefore biased towards a set of phylogenetic markers that may not reflect the history of the nuclear genome. To resolve this, we sequenced the full mitochondrial genomes of 37 representative Myotis, primarily from the New World, in conjunction with targeted sequencing of 3648 ultraconserved elements (UCEs). We inferred the phylogeny and explored the effects of concatenation and summary phylogenetic methods, as well as combinations of markers based on informativeness or levels of missing data, on our results. Of the 294 phylogenies generated from the nuclear UCE data, all are significantly different from phylogenies inferred using mitochondrial genomes. Even within the nuclear data, quartet frequencies indicate that around half of all UCE loci conflict with the estimated species tree. Several factors can drive such conflict, including incomplete lineage sorting, introgressive hybridization, or even phylogenetic error. Despite the degree of discordance between nuclear UCE loci and the mitochondrial genome and among UCE loci themselves, the most common nuclear topology is recovered in one quarter of all analyses with strong nodal support. Based on these results, we re-examine the evolutionary history of Myotis to better understand the phenomena driving their unique nuclear, mitochondrial, and biogeographic histories.


Subject(s)
Chiroptera/classification , Chiroptera/genetics , Genome, Mitochondrial/genetics , Genome/genetics , Phylogeny , Animals
15.
Gen Comp Endocrinol ; 250: 85-94, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28622977

ABSTRACT

Evolutionary studies of genes that have been functionally characterized and whose variation has been associated with pathological conditions represent an opportunity to understand the genetic basis of pathologies. α2-Adrenoreceptors (ADRA2) are a class of G protein-coupled receptors that regulate several physiological processes including blood pressure, platelet aggregation, insulin secretion, lipolysis, and neurotransmitter release. This gene family has been extensively studied from a molecular/physiological perspective, yet much less is known about its evolutionary history. Accordingly, the goal of this study was to investigate the evolutionary history of α2-adrenoreceptors (ADRA2) in vertebrates. Our results show that in addition to the three well-recognized α2-adrenoreceptor genes (ADRA2A, ADRA2B and ADRA2C), we recovered a clade that corresponds to the fourth member of the α2-adrenoreceptor gene family (ADRA2D). We also recovered a clade that possesses two ADRA2 sequences found in two lamprey species. Furthermore, our results show that mammals and crocodiles are characterized by possessing three α2-adrenoreceptor genes, whereas all other vertebrate groups possess the full repertoire of α2-adrenoreceptor genes. Among vertebrates ADRA2D seems to be a dispensable gene, as it was lost two independent times during the evolutionary history of the group. Additionally, we found that most examined species possess the most common alleles described for humans; however, there are cases in which non-human mammals possess the alternative variant. Finally, transcript abundance profiles revealed that during the early evolutionary history of gnathostomes, the expression of ADRA2D in different taxonomic groups became specialized to different tissues, but in the ancestor of sarcopterygians this specialization would have been lost.


Subject(s)
Alligators and Crocodiles/genetics , Evolution, Molecular , Mammals/genetics , Receptors, Adrenergic, alpha-2/genetics , Animals , Conserved Sequence/genetics , Likelihood Functions , Mammals/blood , Phylogeny , Polymorphism, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synteny/genetics , Transcription, Genetic
16.
Gen Comp Endocrinol ; 240: 129-137, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27769631

ABSTRACT

The study of the evolutionary history of genes related to human disease lies at the interface of evolution and medicine. These studies provide the evolutionary context on which medical researchers should work, and are also useful in providing information to suggest further genetic experiments, especially in model species where genetic manipulations can be made. Here we studied the evolution of the ß-adrenoreceptor gene family in vertebrates with the aim of adding an evolutionary framework to the already abundant physiological information. Our results show that in addition to the three already described vertebrate ß-adrenoreceptor genes there is an additional group containing cyclostome sequences. We suggest that ß-adrenoreceptors diversified as a product of the two whole genome duplications that occurred in the ancestor of vertebrates. Gene expression patterns are in general consistent across species, suggesting that expression dynamics were established early in the evolutionary history of vertebrates, and have been maintained since then. Finally, amino acid polymorphisms that are associated to pathological conditions in humans appear to be common in non-human mammals, suggesting that the phenotypic effects of these mutations depend on epistatic interaction with other positions. The evolutionary analysis of the ß-adrenoreceptors delivers new insights about the diversity of these receptors in vertebrates, the evolution of the expression patterns and a comparative perspective regarding the polymorphisms that in humans are linked to pathological conditions.


Subject(s)
Evolution, Molecular , Receptors, Adrenergic, beta/genetics , Vertebrates/genetics , Animals , Gene Duplication , Genome , Humans , Phylogeny
17.
Gene ; 591(1): 245-254, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27432065

ABSTRACT

Genes related to human diseases should be natural targets for evolutionary studies, since they could provide clues regarding the genetic bases of pathologies and potential treatments. Here we studied the evolution of the reprimo gene family, a group of tumor-suppressor genes that are implicated in p53-mediated cell cycle arrest. These genes, especially the reprimo duplicate located on human chromosome 2, have been associated with epigenetic modifications correlated with transcriptional silencing and cancer progression. We demonstrate the presence of a third reprimo lineage that, together with the reprimo and reprimo-like genes, appears to have been differentially retained during the evolutionary history of vertebrates. We present evidence that these reprimo lineages originated early in vertebrate evolution and expanded as a result of the two rounds of whole genome duplications that occurred in the last common ancestor of vertebrates. The reprimo gene has been lost in birds, and the third reprimo gene lineage has been retained in only a few distantly related species, such as coelacanth and gar. Expression analyses revealed that the reprimo paralogs are mainly expressed in the nervous system. Different vertebrate lineages have retained different reprimo paralogs, and even in species that have retained multiple copies, only one of them is heavily expressed.


Subject(s)
Cell Cycle Proteins/genetics , Evolution, Molecular , Genes, Tumor Suppressor , Multigene Family , Phylogeny , Vertebrates/genetics , Amino Acid Sequence , Animals , Gene Duplication , Humans , Likelihood Functions , Sequence Alignment , Synteny/genetics , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics
18.
Front Microbiol ; 7: 661, 2016.
Article in English | MEDLINE | ID: mdl-27199976

ABSTRACT

Dietary shifts can result in changes to the gastrointestinal tract (GIT) microbiota, leading to negative outcomes for the host, including inflammation. Giant pandas (Ailuropoda melanoleuca) are physiologically classified as carnivores; however, they consume an herbivorous diet with dramatic seasonal dietary shifts and episodes of chronic GIT distress with symptoms including abdominal pain, loss of appetite and the excretion of mucous stools (mucoids). These episodes adversely affect the overall nutritional and health status of giant pandas. Here, we examined the fecal microbiota of two giant pandas' non-mucoid and mucoid stools and compared these to samples from a previous winter season that had historically few mucoid episodes. To identify the microbiota present, we isolated and sequenced the 16S rRNA using next-generation sequencing. Mucoids occurred following a seasonal feeding switch from predominately bamboo culm (stalk) to leaves. All fecal samples displayed low diversity and were dominated by bacteria in the phyla Firmicutes and to a lesser extent, Proteobacteria. Fecal samples immediately prior to mucoid episodes had lower microbial diversity as compared to mucoids. Mucoids were mostly comprised of common mucosal-associated taxa including Streptococcus and Leuconostoc species, and exhibited increased abundance for bacteria in the family Pasteurellaceae. Taken together, these findings indicate that mucoids may represent an expulsion of the mucosal lining that is driven by changes in diet. We suggest that these occurrences serve to reset their GIT microbiota following changes in bamboo part preference, as giant pandas have retained a carnivorous GIT anatomy while shifting to an herbivorous diet.

19.
Genome Biol Evol ; 8(5): 1327-37, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27060702

ABSTRACT

PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest "ping-pong" response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Gene Silencing , RNA, Small Interfering/genetics , Selection, Genetic , Animals , Chiroptera , Dogs , Horses , Mice , Transcription, Genetic
20.
Genome Biol Evol ; 8(3): 470-80, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26865070

ABSTRACT

Olfactory receptors (ORs) are membrane proteins that mediate the detection of odorants in the environment, and are the largest vertebrate gene family. Comparative studies of mammalian genomes indicate that OR repertoires vary widely, even between closely related lineages, as a consequence of frequent OR gains and losses. Several studies also suggest that mammalian OR repertoires are influenced by life history traits. Sauropsida is a diverse group of vertebrates group that is the sister group to mammals, and includes birds, testudines, squamates, and crocodilians, and represents a natural system to explore predictions derived from mammalian studies. In this study, we analyzed olfactory receptor (OR) repertoire variation among several representative species and found that the number of intact OR genes in sauropsid genomes analyzed ranged over an order of magnitude, from 108 in the green anole to over 1,000 in turtles. Our results suggest that different sauropsid lineages have highly divergent OR repertoire composition that derive from lineage-specific combinations of gene expansions, losses, and retentions of ancestral OR genes. These differences also suggest that varying degrees of adaption related to life history have shaped the unique OR repertoires observed across sauropsid lineages.


Subject(s)
Evolution, Molecular , Phylogeny , Receptors, Odorant/genetics , Alligators and Crocodiles/genetics , Animals , Birds , Lizards/genetics , Mammals , Odorants/analysis , Species Specificity , Turtles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...